Expert system approach to electroencephalogram signal processing

نویسندگان

  • Mark T. Hellyar
  • Emmanuel C. Ifeachor
  • D. J. Mapps
  • E. M. Allen
  • Nigel R. Hudson
چکیده

The human electroencephalogram (EEG) is often corrupted by ocular artefacts (OAs) caused by the movement of the eyes and/or the eyelids, making the recognition of abnormal EEG signals more difficult. The removal of OAs using conventional signal processing is complicated by the similarity between abnormal EEGs and OAs, which can lead to corruption of the EEG signal. The paper describes the development of a novel approach that uses expert system techniques to differentiate OAs from genuine EEG signals, enabling OA removal to be applied only where appropriate, and ensuring that clinically relevant EEG information is left unaffected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

Classification of EEG Physiological Signal for the Detection of Epileptic Seizure by Using DWT Feature Extraction and Neural Network

EEG (Electroencephalogram) is a technique for identifying neurological disorders. There are various neurological disorders like Epilepsy, brain cancer, etc. Feature extraction and classification of electroencephalogram (EEGs) signals for (normal and epileptic) is a challenge for engineers and scientists. Various signal processing techniques have already been proposed for classification of non-l...

متن کامل

Introduction of low to high frequencies bispectrum rate feature for deep sleep detection from awakening by electroencephalogram

Background: Accurate detection of deep sleep (Due to the low frequency of the brain signal in this part of sleep, it is also called slow-wave sleep) from awakening increases the sleep staging accuracy as an important factor in medicine. Depending on the time and cost of manually determining the depth of sleep, we can automatically determine the depth of sleep by electroencephalogram (EEG) signa...

متن کامل

Integrating Fuzzy Inference System, Image Processing and Quality Control to Detect Defects and Classify Quality Level of Copper Rods

Human-based quality control reduces the accuracy of this process. Also, the speed of decision making in some industries is very important. For removing these limitations in human-based quality control, in this paper, the design of an expert system for automatic and intelligent quality control is investigated. In fact, using an intelligent system, the accuracy in quality control is increased. It...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1995